Source code for ACHP.Cycle

from __future__ import division, absolute_import,print_function
import sys
from .Compressor import CompressorClass  #Compressor
from .Condenser import CondenserClass    #Condenser
from .Evaporator import EvaporatorClass  #Evaporator
from .CoolingCoil import CoolingCoilClass #Cooling Coil
from .MultiCircuitEvaporator import MultiCircuitEvaporatorClass
from .CoaxialHX import CoaxialHXClass #Coaxial internal heat exchanger
from .PHEHX import PHEHXClass #Plate-Heat-Exchanger 
from .LineSet import LineSetClass #Line set class
from .Pump import PumpClass # Secondary loop pump class
from .FinCorrelations import FinInputs     #fin correlations
from .Correlations import TrhoPhase_ph            
from .Solvers import MultiDimNewtRaph, Broyden
from .Preconditioners import DXPreconditioner,SecondaryLoopPreconditioner

from scipy.optimize import brentq, fsolve,newton 
#^^ fsolve - roots (multiple variables); brent - root of one variable fct

import CoolProp as CP
from CoolProp.Plots import PropertyPlot

import numpy as np                  #NumPy is fundamental scientific package
        
[docs]class SecondaryCycleClass(): def __init__(self): """ Load up the necessary sub-structures to be filled with the code that follows """ self.Compressor=CompressorClass() #Outdoor coil is a Condenser in cooling mode and evaporator in heating mode self.Condenser=CondenserClass() self.Condenser.Fins=FinInputs() self.Evaporator=EvaporatorClass() self.Evaporator.Fins=FinInputs() self.CoolingCoil=CoolingCoilClass() self.CoolingCoil.Fins=FinInputs() self.Pump=PumpClass() #Add both types of internal heat exchangers self.CoaxialIHX=CoaxialHXClass() self.PHEIHX=PHEHXClass() self.LineSetSupply=LineSetClass() self.LineSetReturn=LineSetClass() #Make IHX an empty class for holding parameters common to PHE and Coaxial IHX class struct: pass self.IHX=struct()
[docs] def OutputList(self): """ Return a list of parameters for this component for further output It is a list of tuples, and each tuple is formed of items: [0] Description of value [1] Units of value [2] The value itself """ return [ ('Charge','kg',self.Charge), ('Condenser Subcooling','K',self.DT_sc), ('Primary Ref.','-',self.Ref), ('Secondary Ref.','-',self.SecLoopFluid), ('Imposed Variable','-',self.ImposedVariable), ('IHX Type','-',self.IHXType), ('COP','-',self.COP), ('COSP','-',self.COSP), ('Net Capacity','W',self.CoolingCoil.Capacity), ('Net Power','W',self.Power), ('SHR','-',self.SHR), ('Condensation temp (dew)','K',self.Tdew_cond), ('Evaporation temp (dew)','K',self.Tdew_evap), ]
[docs] def Calculate(self,DT_evap,DT_cond,Tin_CC): """ Inputs are differences in temperature [K] between HX air inlet temperature and the dew temperature for the heat exchanger. Required Inputs: DT_evap: Difference in temperature [K] between cooling coil air inlet temperature and refrigerant dew temperature DT_cond: Difference in temperature [K] between condenser air inlet temperature and refrigerant dew temperature Tin_CC: Inlet "glycol" temperature to line set feeding cooling coil """ if self.Verbosity>1: print('Inputs: DTevap %7.4f DTcond %7.4f fT_IHX %7.4f'%(DT_evap,DT_cond,Tin_CC)) #AbstractState if hasattr(self,'Backend'): #check if backend is given AS = CP.AbstractState(self.Backend, self.Ref) if hasattr(self,'MassFrac'): AS.set_mass_fractions([self.MassFrac]) else: #otherwise, use the defualt backend AS = CP.AbstractState('HEOS', self.Ref) self.Backend = 'HEOS' self.AS = AS #AbstractState for SecLoopFluid if hasattr(self,'Backend_SLF'): #check if backend_SLF is given AS_SLF = CP.AbstractState(self.Backend_SLF, self.SecLoopFluid) if hasattr(self,'MassFrac_SLF'): AS_SLF.set_mass_fractions([self.MassFrac_SLF]) else: #otherwise, use the defualt backend AS_SLF = CP.AbstractState('HEOS', self.SecLoopFluid) self.Backend_SLF = 'HEOS' self.AS_SLF = AS_SLF #Store the values to save on computation for later self.DT_evap=DT_evap self.DT_cond=DT_cond self.Tin_CC=Tin_CC #If the user doesn't include the Mode, set it to Air Conditioning if not hasattr(self,'Mode'): self.Mode='AC' if self.Mode=='AC': self.Tdew_cond=self.Condenser.Fins.Air.Tdb+DT_cond self.Tdew_evap=self.CoolingCoil.Fins.Air.Tdb-DT_evap elif self.Mode=='HP': self.Tdew_cond=Tin_CC+DT_cond self.Tdew_evap=self.Evaporator.Fins.Air.Tdb-DT_evap else: raise ValueError('Mode must be AC or HP') #Evaporator and condeser saturation pressures AS.update(CP.QT_INPUTS,1.0,self.Tdew_cond) psat_cond=AS.p() #[Pa] AS.update(CP.QT_INPUTS,1.0,self.Tdew_evap) psat_evap=AS.p() #[Pa] #Evaporator and condeser bubble temepratures AS.update(CP.PQ_INPUTS,psat_evap,0.0) self.Tbubble_evap=AS.T() #[K] AS.update(CP.PQ_INPUTS,psat_cond,0.0) self.Tbubble_cond=AS.T() #[K] #Cycle solver for 'AC' mode if self.Mode=='AC': params={ #dictionary -> key:value, e.g. 'key':2345, 'pin_r': psat_evap+self.DP_low, 'pout_r': psat_cond-self.DP_high, 'Tin_r': self.Tdew_evap+self.PHEIHX.DT_sh, # TrhoPhase_ph(self.Ref,psat_evap,self.LineSetReturn.hout,self.Tbubble_evap,self.Tdew_evap)[0], 'Ref': self.Ref, 'Backend': self.Backend } self.Compressor.Update(**params) self.Compressor.Calculate() params={ 'mdot_r': self.Compressor.mdot_r, 'Tin_r': self.Compressor.Tout_r, 'psat_r': psat_cond, 'Ref': self.Ref, 'Backend': self.Backend } self.Condenser.Update(**params) self.Condenser.Calculate() #Inlet enthalpy to LineSetSupply AS_SLF.update(CP.PT_INPUTS,self.Pump.pin_g,Tin_CC) h_in_LineSetSupply = AS_SLF.hmass() #[J/kg] params={ 'mdot': self.Pump.mdot_g, 'hin': h_in_LineSetSupply, } self.LineSetSupply.Update(**params) self.LineSetSupply.Calculate() #Now run CoolingCoil to predict inlet glycol temperature to IHX params={ 'mdot_g': self.Pump.mdot_g, 'Tin_g': self.LineSetSupply.Tout, } self.CoolingCoil.Update(**params) self.CoolingCoil.Calculate() #Inlet enthalpy to LineSetReturn AS_SLF.update(CP.PT_INPUTS,self.Pump.pin_g,self.CoolingCoil.Tout_g) h_in_LineSetReturn = AS_SLF.hmass() #[J/kg] params={ 'mdot': self.Pump.mdot_g, 'hin': h_in_LineSetReturn } self.LineSetReturn.Update(**params) self.LineSetReturn.Calculate() if self.IHXType=='Coaxial': params={ 'mdot_g': self.Pump.mdot_g, 'Tin_g': self.CoolingCoil.Tout_g, 'pin_r': psat_evap, 'hin_r': self.Condenser.hout_r, 'Ref_r': self.Ref, 'Backend_r': self.Backend, 'mdot_r': self.Compressor.mdot_r, } self.CoaxialIHX.Update(**params) self.CoaxialIHX.Calculate() self.IHX.Charge_r=self.CoaxialIHX.Charge_r self.IHX.Q=self.CoaxialIHX.Q self.IHX.Tout_g=self.CoaxialIHX.Tout_g self.IHX.DP_g=self.CoaxialIHX.DP_g self.IHX.hout_r=self.CoaxialIHX.hout_r self.IHX.DP_r=self.CoaxialIHX.DP_r if hasattr(self,'PHEIHX'): del self.PHEIHX elif self.IHXType=='PHE': #Inlet enthalpy to PHEIHX AS_SLF.update(CP.PT_INPUTS,self.PHEIHX.pin_h,self.CoolingCoil.Tout_g) h_in_PHEIHX = AS_SLF.hmass() #[J/kg] params={ 'mdot_h': self.Pump.mdot_g, 'hin_h': h_in_PHEIHX, 'mdot_c': self.Compressor.mdot_r, 'pin_c': psat_evap, 'hin_c': self.Condenser.hout_r, } self.PHEIHX.Update(**params) self.PHEIHX.Calculate() self.IHX.Charge_r=self.PHEIHX.Charge_c self.IHX.Q=self.PHEIHX.Q self.IHX.Tout_g=self.PHEIHX.Tout_h self.IHX.DP_g=self.PHEIHX.DP_h self.IHX.DP_r=self.PHEIHX.DP_c self.IHX.hout_r=self.PHEIHX.hout_c if hasattr(self,'CoaxialIHX'): del self.CoaxialIHX params={ 'DP_g': self.IHX.DP_g+self.CoolingCoil.DP_g+self.LineSetSupply.DP+self.LineSetReturn.DP, 'Tin_g': self.CoolingCoil.Tout_g } self.Pump.Update(**params) self.Pump.Calculate() self.Charge=self.Condenser.Charge+self.IHX.Charge_r self.EnergyBalance=self.Compressor.CycleEnergyIn+self.Condenser.Q+self.IHX.Q #Calculate properties: AS.update(CP.QT_INPUTS,0.0,self.Tbubble_cond) h_L = AS.hmass() #[J/kg] cp_L = AS.cpmass() #[J/kg-K] AS.update(CP.PT_INPUTS,psat_cond,self.Tbubble_cond-self.DT_sc_target) h_target = AS.hmass() #[J/kg] self.DT_sc=(h_L - self.Condenser.hout_r)/cp_L deltaH_sc=self.Compressor.mdot_r*(h_L-h_target) # ## Plot a p-h plot # plot = PropertyPlot('HEOS::' + self.Ref, 'PH', unit_system='KSI') # plot.plot([self.Compressor.hin_r/1000,self.Compressor.hout_r/1000,self.Condenser.hout_r/1000,self.PHEIHX.hin_c/1000,self.Compressor.hin_r/1000],[psat_evap/1000,psat_cond/1000,psat_cond/1000,psat_evap/1000,psat_evap/1000]) # plot.show() resid=np.zeros((3)) resid[0]=self.Compressor.mdot_r*(self.Compressor.hin_r-self.IHX.hout_r) if self.ImposedVariable=='Subcooling': resid[1]=self.Condenser.DT_sc-self.DT_sc_target elif self.ImposedVariable=='Charge': resid[1]=self.Charge-self.Charge_target # resid[2]=self.IHX.Q-self.CoolingCoil.Q+self.Pump.W self.residSL=self.IHX.Q-self.CoolingCoil.Q+self.Pump.W+self.LineSetSupply.Q+self.LineSetReturn.Q resid[2]=self.residSL if self.Verbosity>7: print('Wcomp % 12.6e Qcond: % 12.6e QPHE %10.4f ' %(self.Compressor.W,self.Condenser.Q,self.IHX.Q)) if self.Verbosity>1: print('Qres % 12.6e Resid2: % 12.6e ResSL %10.4f Charge %10.4f SC: %8.4f' %(resid[0],resid[1],self.residSL,self.Charge,self.Condenser.DT_sc)) self.Capacity=self.CoolingCoil.Capacity self.COP=self.CoolingCoil.Q/self.Compressor.W self.COSP=self.CoolingCoil.Capacity/(self.Compressor.W+self.Pump.W+self.CoolingCoil.Fins.Air.FanPower+self.Condenser.Fins.Air.FanPower) self.SHR=self.CoolingCoil.SHR self.Power=self.Compressor.W+self.Pump.W+self.CoolingCoil.Fins.Air.FanPower+self.Condenser.Fins.Air.FanPower self.DP_high_Model=self.Condenser.DP_r #[Pa] self.DP_low_Model=self.IHX.DP_r #[Pa] #Cycle solver for 'HP' mode elif self.Mode=='HP': if psat_evap+self.DP_low<0: raise ValueError('Compressor inlet pressure less than zero ['+str(psat_evap+self.DP_low)+' Pa] - is low side pressure drop too high?') params={ #dictionary -> key:value, e.g. 'key':2345, 'pin_r': psat_evap+self.DP_low, 'pout_r': psat_cond-self.DP_high, 'Tin_r': self.Tdew_evap+self.Evaporator.DT_sh, # TrhoPhase_ph(self.Ref,psat_evap,self.LineSetReturn.hout,self.Tbubble_evap,self.Tdew_evap)[0], 'Ref': self.Ref, 'Backend': self.Backend } self.Compressor.Update(**params) self.Compressor.Calculate() #Inlet enthalpy to LineSetSupply AS_SLF.update(CP.PT_INPUTS,self.Pump.pin_g,Tin_CC) h_in_LineSetSupply = AS_SLF.hmass() #[J/kg] params={ 'mdot': self.Pump.mdot_g, 'hin': h_in_LineSetSupply } self.LineSetSupply.Update(**params) self.LineSetSupply.Calculate() #Now run CoolingCoil to predict inlet glycol temperature to IHX params={ 'mdot_g': self.Pump.mdot_g, 'Tin_g': self.LineSetSupply.Tout, } self.CoolingCoil.Update(**params) self.CoolingCoil.Calculate() #Inlet enthalpy to LineSetReturn AS_SLF.update(CP.PT_INPUTS,self.Pump.pin_g,self.CoolingCoil.Tout_g) h_in_LineSetReturn = AS_SLF.hmass() #[J/kg] params={ 'mdot': self.Pump.mdot_g, 'hin': h_in_LineSetReturn } self.LineSetReturn.Update(**params) self.LineSetReturn.Calculate() #Inlet enthalpy to PHEIHX AS_SLF.update(CP.PT_INPUTS,self.PHEIHX.pin_c,self.LineSetReturn.Tout) h_in_PHEIHX = AS_SLF.hmass() #[J/kg] params={ 'mdot_h': self.Compressor.mdot_r, 'hin_h': self.Compressor.hout_r, 'pin_h': psat_cond, 'mdot_c': self.Pump.mdot_g, 'hin_c': h_in_PHEIHX } self.PHEIHX.Update(**params) self.PHEIHX.Calculate() params={ 'mdot_r': self.Compressor.mdot_r, 'psat_r': psat_evap, 'hin_r': self.PHEIHX.hout_h, 'Ref': self.Ref, 'Backend': self.Backend } self.Evaporator.Update(**params) self.Evaporator.Calculate() params={ 'DP_g': self.PHEIHX.DP_c+self.CoolingCoil.DP_g, 'Tin_g': self.CoolingCoil.Tout_g } self.Pump.Update(**params) self.Pump.Calculate() self.Charge=self.Evaporator.Charge+self.PHEIHX.Charge_h #Calculate properties: AS.update(CP.QT_INPUTS,0.0,self.Tbubble_cond) h_L = AS.hmass() #[J/kg] cp_L = AS.cpmass() #[J/kg-K] AS.update(CP.PT_INPUTS,psat_cond,self.Tbubble_cond-self.DT_sc_target) h_target = AS.hmass() #[J/kg] #Calculate an effective subcooling amount by deltah/cp_satL #Can be positive or negative (negative is quality at outlet self.DT_sc=self.PHEIHX.DT_sc_h#(PropsSI('H','T',self.Tbubble_cond,'Q',0,self.Ref)-self.PHEIHX.hout_h)/(PropsSI('C','T',self.Tbubble_cond,'Q',0,self.Ref)) #*1000 #*1000 deltaH_sc=self.Compressor.mdot_r*(h_L-h_target) resid=np.zeros((3)) resid[0]=self.Compressor.mdot_r*(self.Compressor.hin_r-self.Evaporator.hout_r) if self.ImposedVariable=='Subcooling': resid[1]=self.DT_sc-self.DT_sc_target elif self.ImposedVariable=='Charge': resid[1]=self.Charge-self.Charge_target self.residSL=self.PHEIHX.Q+self.CoolingCoil.Q+self.Pump.W+self.LineSetSupply.Q+self.LineSetReturn.Q resid[2]=self.residSL if self.Verbosity>1: print('Qres % 12.6e Resid2: % 12.6e ResSL %10.4f Charge %10.4f SC: %8.4f' %(resid[0],resid[1],self.residSL,self.Charge,self.DT_sc)) self.Capacity=-self.CoolingCoil.Q+self.CoolingCoil.Fins.Air.FanPower self.COP=-self.CoolingCoil.Q/self.Compressor.W self.COSP=self.Capacity/(self.Compressor.W+self.Pump.W+self.CoolingCoil.Fins.Air.FanPower+self.Evaporator.Fins.Air.FanPower) self.Power=self.Compressor.W+self.Pump.W+self.CoolingCoil.Fins.Air.FanPower+self.Evaporator.Fins.Air.FanPower self.SHR=-self.CoolingCoil.SHR self.DP_high_Model=self.PHEIHX.DP_h #[Pa] self.DP_low_Model=self.Evaporator.DP_r #[Pa] self.DT_evap=DT_evap self.DT_cond=DT_cond return resid
[docs] def PreconditionedSolve(self,PrecondValues=None): ''' PrecondValues = dictionary of values DT_evap, DT_cond and Tin_CC ''' def OBJECTIVE(x): """ Takes the place of a lambda function since lambda functions do not bubble error properly """ return self.Calculate(x[0],x[1],x[2]) def OBJECTIVE2(x,Tin): """ Takes the place of a lambda function since lambda functions do not bubble error properly """ return self.Calculate(x[0],x[1],Tin) def OBJECTIVE_SL(Tin_CC): """ Objective function for the inner loop of the vapor compression system Using the MultiDimNewtRaph function will re-evaluate the Jacobian at every step. Slower, but more robust since the solution surfaces aren't smooth enough Note: This function is not currently used! """ x=MultiDimNewtRaph(OBJECTIVE2,[self.DT_evap,self.DT_cond],args=(Tin_CC,)) # Update the guess values for Delta Ts starting # at the third step (after at least one update away # from the boundaries) if self.OBJ_SL_counter>=0: self.DT_evap=x[0] self.DT_cond=x[1] pass self.OBJ_SL_counter+=1 return self.residSL def PrintDPs(): print('DP_LP :: Input:',self.DP_low,'Pa / Model calc:',self.DP_low_Model,'Pa') print('DP_HP :: Input:',self.DP_high,'Pa / Model calc:',self.DP_high_Model,'Pa') #Some variables need to be initialized self.DP_low=0 #The actual low-side pressure drop to be used in Pa self.DP_high=0 #The actual low-side pressure drop to be used in Pa self.OBJ_SL_counter=0 #Run the preconditioner to get guess values for the temperatures if PrecondValues is None: self.DT_evap,self.DT_cond,Tin_CC=SecondaryLoopPreconditioner(self) else: self.DT_evap=PrecondValues['DT_evap'] self.DT_cond=PrecondValues['DT_cond'] Tin_CC=PrecondValues['Tin_CC'] #Remove the other, non-used IHX class if found if self.IHXType=='PHE': if hasattr(self,'CoaxialIHX'): del self.CoaxialIHX else: if hasattr(self,'PHEIHX'): del self.PHEIHX #Remove the condenser if in heating mode and condenser found if self.Mode=='HP': if hasattr(self,'Condenser'): del self.Condenser iter=1 max_error_DP=999 #Outer loop with a more relaxed convergence criterion while max_error_DP>0.5: iter_inner=1 #Inner loop to determine pressure drop for high and low sides while max_error_DP>0.05 and iter_inner<10: #Run to calculate the pressure drop as starting point OBJECTIVE([self.DT_evap,self.DT_cond,Tin_CC]) #Calculate the max error max_error_DP=max([abs(self.DP_low_Model-self.DP_low),abs(self.DP_high_Model-self.DP_high)]) if self.Verbosity>0: PrintDPs() print('Max pressure drop error [inner loop] is',max_error_DP,'Pa') #Update the pressure drop terms self.DP_low=self.DP_low_Model #/1000 self.DP_high=self.DP_high_Model #/1000 iter_inner+=1 if self.Verbosity > 0: print("Done with the inner loop on pressure drop") # Use Newton-Raphson solver (self.DT_evap,self.DT_cond,Tin_CC)=MultiDimNewtRaph(OBJECTIVE,[self.DT_evap,self.DT_cond,Tin_CC],dx=0.1) #Calculate the error max_error_DP=max([abs(self.DP_low_Model-self.DP_low),abs(self.DP_high_Model-self.DP_high)]) if self.Verbosity>0: PrintDPs() print('Max pressure drop error [outer loop] is',max_error_DP,'Pa') if self.Verbosity>1: print('Capacity: ', self.Capacity) print('COP: ',self.COP) print('COP (w/ both fans): ',self.COSP) print('SHR: ',self.SHR) return
[docs]class DXCycleClass(): def __init__(self): """ Load up the necessary sub-structures to be filled with the code that follows """ self.Compressor=CompressorClass() self.Condenser=CondenserClass() self.Condenser.Fins=FinInputs() self.Evaporator=EvaporatorClass() self.Evaporator.Fins=FinInputs() self.LineSetSupply=LineSetClass() self.LineSetReturn=LineSetClass()
[docs] def OutputList(self): """ Return a list of parameters for this component for further output It is a list of tuples, and each tuple is formed of items: [0] Description of value [1] Units of value [2] The value itself """ Output_List=[] #append optional parameters, if applicable if hasattr(self,'TestName'): Output_List.append(('Name','N/A',self.TestName)) if hasattr(self,'TestDescription'): Output_List.append(('Description','N/A',self.TestDescription)) if hasattr(self,'TestDetails'): Output_List.append(('Details','N/A',self.TestDetails)) Output_List_default=[ #default output list ('Charge','kg',self.Charge), ('Condensation temp (dew)','K',self.Tdew_cond), ('Evaporation temp (dew)','K',self.Tdew_evap), ('Condenser Subcooling','K',self.DT_sc), ('Primary Ref.','-',self.Ref), ('COP','-',self.COP), ('COSP','-',self.COSP), ('Net Capacity','W',self.Capacity), ('Net Power','W',self.Power), ('SHR','-',self.SHR), ('Imposed Variable','-',self.ImposedVariable), ] for i in range(0,len(Output_List_default)): #append default parameters to output list Output_List.append(Output_List_default[i]) return Output_List
[docs] def Calculate(self,DT_evap,DT_cond): """ Inputs are differences in temperature [K] between HX air inlet temperature and the dew temperature for the heat exchanger. Required Inputs: DT_evap: Difference in temperature [K] between evaporator air inlet temperature and refrigerant dew temperature DT_cond: Difference in temperature [K] between condenser air inlet temperature and refrigeant dew temperature """ if self.Verbosity>1: print('DTevap %7.4f DTcond %7.4f,' %(DT_evap,DT_cond)) #AbstractState if hasattr(self,'Backend'): #check if backend is given AS = CP.AbstractState(self.Backend, self.Ref) else: #otherwise, use the defualt backend AS = CP.AbstractState('HEOS', self.Ref) self.Backend = 'HEOS' self.AS = AS #Condenser and evaporator dew temperature (guess) Tdew_cond=self.Condenser.Fins.Air.Tdb+DT_cond#the values (Tin_a,..) come from line 128ff Tdew_evap=self.Evaporator.Fins.Air.Tdb-DT_evap #Condenser and evaporator saturation pressures AS.update(CP.QT_INPUTS,1.0,Tdew_cond) psat_cond=AS.p() #[Pa] AS.update(CP.QT_INPUTS,1.0,Tdew_evap) psat_evap=AS.p() #[Pa] #evaporator bubble temparture AS.update(CP.PQ_INPUTS,psat_evap,0.0) Tbubble_evap=AS.T() #[T] self.Tdew_cond=Tdew_cond self.Tdew_evap=Tdew_evap #If the user doesn't include the Mode, fail assert hasattr(self,'Mode') #Cycle Solver in 'AC' model if self.Mode=='AC': if not hasattr(self.Compressor,'mdot_r') or self.Compressor.mdot_r<0.00001: # The first run of model, run the compressor just so you can get a preliminary value # for the mass flow rate for the line set params={ #dictionary -> key:value, e.g. 'key':2345, 'pin_r': psat_evap, 'pout_r': psat_cond, 'Tin_r': Tdew_evap+self.Evaporator.DT_sh, 'Ref': self.Ref, 'Backend': self.Backend, } self.Compressor.Update(**params) self.Compressor.Calculate() #Calculate inlet enthalpy AS.update(CP.PT_INPUTS,psat_evap,Tdew_evap+self.Evaporator.DT_sh) h_in = AS.hmass() #[J/kg] params={ 'pin': psat_evap, 'hin': h_in, 'mdot': self.Compressor.mdot_r, 'Ref': self.Ref, 'Backend': self.Backend } self.LineSetReturn.Update(**params) self.LineSetReturn.Calculate() params={ #dictionary -> key:value, e.g. 'key':2345, 'pin_r': psat_evap-self.DP_low, 'pout_r': psat_cond+self.DP_high, 'Tin_r': TrhoPhase_ph(self.AS,psat_evap,self.LineSetReturn.hout,Tbubble_evap,Tdew_evap)[0], 'Ref': self.Ref, 'Backend': self.Backend } self.Compressor.Update(**params) self.Compressor.Calculate() if self.Verbosity>1: print('Comp DP L H',self.DP_low,self.DP_high) params={ 'mdot_r': self.Compressor.mdot_r, 'Tin_r': self.Compressor.Tout_r, 'psat_r': psat_cond, 'Ref': self.Ref, 'Backend': self.Backend } self.Condenser.Update(**params) self.Condenser.Calculate() params={ 'pin':psat_cond, 'hin':self.Condenser.hout_r, 'mdot':self.Compressor.mdot_r, 'Ref':self.Ref, 'Backend': self.Backend } self.LineSetSupply.Update(**params) self.LineSetSupply.Calculate() params={ 'mdot_r': self.Compressor.mdot_r, 'psat_r': psat_evap, 'hin_r': self.LineSetSupply.hout, 'Ref': self.Ref, 'Backend': self.Backend } self.Evaporator.Update(**params) self.Evaporator.Calculate() self.Charge=self.Condenser.Charge+self.Evaporator.Charge+self.LineSetSupply.Charge+self.LineSetReturn.Charge self.EnergyBalance=self.Compressor.CycleEnergyIn+self.Condenser.Q+self.Evaporator.Q resid=np.zeros((2)) self.DP_HighPressure=self.Condenser.DP_r+self.LineSetSupply.DP self.DP_LowPressure=self.Evaporator.DP_r+self.LineSetReturn.DP resid[0]=self.Compressor.mdot_r*(self.LineSetReturn.hin-self.Evaporator.hout_r) if self.ImposedVariable=='Subcooling': resid[1]=self.Condenser.DT_sc-self.DT_sc_target elif self.ImposedVariable=='Charge': resid[1]=self.Charge-self.Charge_target if self.Verbosity>1: print(resid) self.Capacity=self.Evaporator.Capacity self.Power=self.Compressor.W+self.Evaporator.Fins.Air.FanPower+self.Condenser.Fins.Air.FanPower self.COP=self.Evaporator.Q/self.Compressor.W self.COSP=self.Evaporator.Capacity/self.Power self.SHR=self.Evaporator.SHR self.DT_sc=self.Condenser.DT_sc #Cycle Solver in 'HP' model elif self.Mode=='HP': params={ #dictionary -> key:value, e.g. 'key':2345, 'pin_r': psat_evap-self.DP_low, 'pout_r': psat_cond+self.DP_high, 'Tin_r': Tdew_evap+self.Evaporator.DT_sh, 'Ref': self.Ref, 'Backend': self.Backend } self.Compressor.Update(**params) self.Compressor.Calculate() params={ 'pin': psat_cond, 'hin': self.Compressor.hout_r, 'mdot': self.Compressor.mdot_r, 'Ref': self.Ref, 'Backend': self.Backend } self.LineSetSupply.Update(**params) self.LineSetSupply.Calculate() params={ 'mdot_r': self.Compressor.mdot_r, 'Tin_r': self.Compressor.Tout_r, 'psat_r': psat_cond, 'Ref': self.Ref, 'Backend': self.Backend } self.Condenser.Update(**params) self.Condenser.Calculate() params={ 'pin': psat_cond, 'hin': self.Condenser.hout_r, 'mdot': self.Compressor.mdot_r, 'Ref': self.Ref, 'Backend': self.Backend } self.LineSetReturn.Update(**params) self.LineSetReturn.Calculate() params={ 'mdot_r': self.Compressor.mdot_r, 'psat_r': psat_evap, 'hin_r': self.LineSetReturn.hout, 'Ref': self.Ref, 'Backend': self.Backend } self.Evaporator.Update(**params) self.Evaporator.Calculate() self.Charge=self.Condenser.Charge+self.Evaporator.Charge+self.LineSetSupply.Charge+self.LineSetReturn.Charge self.EnergyBalance=self.Compressor.CycleEnergyIn+self.Condenser.Q+self.Evaporator.Q resid=np.zeros((2)) resid[0]=self.Compressor.mdot_r*(self.Compressor.hin_r-self.Evaporator.hout_r) if self.ImposedVariable=='Subcooling': resid[1]=self.Condenser.DT_sc-self.DT_sc_target elif self.ImposedVariable=='Charge': resid[1]=self.Charge-self.Charge_target self.Capacity=-self.Condenser.Q+self.Condenser.Fins.Air.FanPower self.DT_sc=self.Condenser.DT_sc self.Power=self.Compressor.W+self.Evaporator.Fins.Air.FanPower+self.Condenser.Fins.Air.FanPower self.COP=-self.Condenser.Q/self.Compressor.W self.COSP=self.Capacity/self.Power self.SHR=self.Evaporator.SHR self.DP_HighPressure=self.Condenser.DP_r+self.LineSetSupply.DP self.DP_LowPressure=self.Evaporator.DP_r+self.LineSetReturn.DP else: ValueError("DX Cycle mode must be 'AC', or 'HP'") if self.Verbosity>1: print('DTevap %7.4f DTcond %7.4f Qres % 12.6e DTsc: % 12.6e Charge %10.4f SC: %8.4f' %(DT_evap,DT_cond,resid[0],resid[1],self.Charge,self.Condenser.DT_sc)) self.DT_evap=DT_evap self.DT_cond=DT_cond return resid
[docs] def PreconditionedSolve(self): """ Solver that will precondition by trying a range of DeltaT until the model can solve, then will kick into 2-D Newton Raphson solve The two input variables for the system solver are the differences in temperature between the inlet air temperature of the heat exchanger and the dew temperature of the refrigerant. This is important for refrigerant blends with temperature glide during constant-pressure evaporation or condensation. Good examples of common working fluid with glide would be R404A or R410A. """ def OBJECTIVE_DXCycle(x): """ A wrapper function to convert input vector for fsolve to the proper form for the solver """ try: resids=self.Calculate(DT_evap=float(x[0]),DT_cond=float(x[1]))#,DP_low=float(x[2]),DP_high=float(x[3])) except ValueError: raise return resids # Use the preconditioner to determine a reasonably good starting guess DT_evap_init,DT_cond_init=DXPreconditioner(self) GoodRun=False while GoodRun==False: try: self.DP_low=0 self.DP_high=0 DP_converged=False while DP_converged==False: #Actually run the Newton-Raphson solver to get the solution x=Broyden(OBJECTIVE_DXCycle,[DT_evap_init,DT_cond_init]) delta_low=abs(self.DP_low-abs(self.DP_LowPressure)) delta_high=abs(self.DP_high-abs(self.DP_HighPressure)) self.DP_low=abs(self.DP_LowPressure) self.DP_high=abs(self.DP_HighPressure) #Update the guess values based on last converged values DT_evap_init=self.DT_evap DT_cond_init=self.DT_cond if delta_low<1 and delta_high<1: DP_converged=True if self.Verbosity>4: print(self.DP_HighPressure,self.DP_LowPressure,'DPHP') GoodRun=True except AttributeError: # This will be a fatal error !! Should never have attribute error raise except: print("-------------- Exception Caught ---------------- " ) print("Error of type",sys.exc_info()[0]," is: " + sys.exc_info()[1].message) raise if self.Verbosity>0: print('Capacity: ', self.Capacity) print('COP: ',self.COP) print('COP (w/ both fans): ',self.COSP) print('SHR: ',self.SHR) print('UA_r_evap',self.Evaporator.UA_r) print('UA_a_evap',self.Evaporator.UA_a) print('UA_r_cond',self.Condenser.UA_r) print('UA_a_cond',self.Condenser.UA_a)